Gunter, Jason

From:

Nations, Mark [mnations@doerun.com]

Sent:

Monday, May 13, 2013 2:50 PM

To:

Gunter, Jason

Cc:

England, Jason; Yingling, Mark; Wohl, Matthew; 'Kevin Lombardozzi' (kevinl@VALHI.NET);

'John E. Kennedy' (jkennedy@i1.net)

Subject:

National Monthly Progress Report

Attachments:

NATL 04-13.doc; National Water Samples 04-03-13.pdf

Jaason,

Attached is the April Monthly Progress Report.

Mark

This message is intended solely for the designated recipient and may contain confidential, privileged or proprietary information. If you have received it in error, please notify the sender immediately and delete the original and any copy or printout. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of The Doe Run Company. Finally, the recipient should check this message and any attachments for the presence of viruses or malware. The Doe Run Company accepts no liability for any loss or damage caused through the transmission of this e-mail.

07C & 30290265 4, 2 Superfund

0402

Remediation Group

Mark Nations
Mining Properties Manager
mnations@doerun.com

May 13, 2013

Mr. Jason Gunter Remedial Project Manager U.S. Environmental Protection Agency Region 7 - Superfund Branch 11201 Renner Blvd. Lenexa, KS 66219

Re: National Mine Tailings Site Progress Report

Dear Mr. Gunter:

As required by Article VI, Section 51 of the Unilateral Administrative Order (Docket No.CERCLA-07-2006-0231) for the referenced project and on behalf of The Doe Run Company and NL Industries, Inc., the progress report for the period April 1, 2013 through April 30, 2013 is enclosed. If you have any questions or comments, please call me 573-518-0800.

Sincerely,

Mark Nations

Mining Properties Manager

mail nation

Enclosure

c: Jason England - TDRC

Mark Yingling - TDRC (electronic only)

Matt Wohl – TDRC (electronic only)

Kevin Lombardozzi – NL Industries, Inc.

John Kennedy - City of Park Hills

Norm Lucas - Park Hills - Leadington Chamber of Commerce

Robert Hinkson - MDNR

Ty Morris - Barr Engineering

National Mine Tailings Site

Park Hills, Missouri

Removal Action - Monthly Progress Report

Period: March 1, 2013 - March 31, 2013

1. Actions Performed and Problems Encountered This Period:

a. Work continued on the development of the Removal Action Report.

2. Analytical Data and Results Received This Period:

- a. During this period, water samples were collected at the sampling locations identified in Appendix C of the Removal Action Work Plan where water was present. Copies of the analytical results from the last sampling event are included with this progress report.
- b. During this period, the Ambient Air Monitoring Reports for December 2012 and Fourth Quarter 2012 were completed. Any issues identified in these reports are discussed below. A copy of these documents has been sent to your attention.

The December 2012 Ambient Air Monitoring Report noted the following:

- The action levels for lead and dust were not exceeded.
- The sample for National #1 (Ozark Insulation) TSP monitor on 12/06/12 was qualified because the reweigh value was outside laboratory tolerances. The lead concentration was not affected by this issue.
- The sample for National #2 (Soccer Field) TSP monitor on 12/20/12 was invalid since the elapsed time for the sample exceeded tolerances. Upon identifying the issue, timer and sampling procedures were evaluated and the issue was corrected.
- The sample for National #3 (Water Plant) TSP monitor on 12/20/12 was invalid due to a mechanical failure. Upon discovering the mechanical failure, the issue was addressed.
- No samples were taken with the TSP monitors on 12/24/12 and 12/25/12 due to the holiday.
- No samples were taken with the PM₁₀ monitors on 12/26/12 due to the holiday.
- A QA filter blank was completed on the Big River #4 (Primary) TSP and PM₁₀ monitors on 12/28/12.

The Fourth Quarter 2012 Ambient Air Monitoring Report noted the following:

- The action levels for lead and dust were not exceeded.
- No sample was taken with the Big River #4 (Primary) PM₁₀ monitor on 10/09/12 due to mechanical failure of the elapsed time indicator. Upon discovery, the issue was corrected.
- No sample was taken with the Big River #4 (Primary) TSP monitor on 11/02/12 due to the filter being compromised by moisture during a storm event. Upon discovery, the issue was corrected.
- The sample for Big River #4 (QA) PM₁₀ monitor was invalid on 11/05/12 due to the elapsed run time exceeding tolerances. Upon identifying the issue, timer and sampling procedures were evaluated and the issue was corrected.
- No samples were taken with the TSP and PM₁₀ monitors on 11/21/12, 11/22/12, and 11/23/12 due to the holiday.
- A QA filter blank was completed on the Rivermines #3 (Water Treatment Plant) TSP and PM₁₀ monitors on 11/27/12.
- The sample for National #1 (Ozark Insulation) TSP monitor on 12/06/12 was qualified because the reweigh value was outside laboratory tolerances. The lead concentration was not affected by this issue
- The sample for National #2 (Soccer Field) TSP monitor on 12/20/12 was invalid since the elapsed time for the sample exceeded tolerances. Upon identifying the issue, timer and sampling procedures were evaluated and the issue was corrected.
- The sample for National #3 (Water Plant) TSP monitor on 12/20/12 was invalid due to a mechanical failure. Upon discovering the mechanical failure, the issue was addressed.
- No samples were taken with the TSP monitors on 12/24/12 and 12/25/12 due to the holiday.
- No samples were taken with the PM_{10} monitors on 12/26/12 due to the holiday.

Page 2

- A QA filter blank was completed on the Big River #4 (Primary) TSP and PM₁₀ monitors on 12/28/12.
- 3. Developments Anticipated and Work Scheduled for Next Period:
 - a. Complete work in the Mine Shaft Area.
 - b. Continue developing the Removal Action Report.
 - c. Complete monthly water sampling activities as described in the Removal Action Work Plan.
 - d. Complete air monitoring activities as described in the Removal Action Work Plan.
- 4. Changes in Personnel:
 - a. None.
- 5. Issues or Problems Arising This Period:
 - a. None.
- 6. Resolution of Issues or Problems Arising This Period:
 - a. None.

End of Monthly Progress Report

April 15, 2013

Allison Olds Barr Engineering Company 1001 Diamond Ridge Suite 1100 Jefferson City, MO 65109

TEL: (573) 638-5007 FAX: (573) 638-5001

RE: National Tailings Pile - Design and Construction WorkOrder: 13040248

Dear Allison Olds:

TEKLAB, INC received 2 samples on 4/4/2013 8:00:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin

Project Manager

(618)344-1004 ex 16

MAustin@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040248

Client Project: National Tailings Pile - Design and Construction

Report Date: 15-Apr-13

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Sample Summary	7
Dates Report	8
Quality Control Results	9
Receiving Check List	14
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040248

Client Project: National Tailings Pile - Design and Construction

Report Date: 15-Apr-13

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
 - MB Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit
- **NELAP NELAP Accredited**
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TNTC Too numerous to count (> 200 CFU)

Oualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits

Case Narrative

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040248

Kansas City

Collinsville

8/31/2013

Client Project: National Tailings Pile - Design and Construction

Report Date: 15-Apr-13

Cooler Receipt Temp: 1.8 °C

Collinsville

Oklahoma

ODEQ

Locations and Accreditations

Springfield

Address Phone Fax Email	5445 Horseshoe Lake Road Collinsville, IL 62234-7425 (618) 344-1004 (618) 344-1005 jhriley@teklabinc.com		Address Phone Fax Email	3920 Pintail Dr Springfield, IL 62711-9415 (217) 698-1004 (217) 698-1005 KKlostermann@teklabinc.com		Address Phone Fax Email	8421 Nieman Road Lenexa, KS 66214 (913) 541-1998 (913) 541-1998 dthompson@tcklabinc.com		
State		Dept		Cert#	NELAP	Exp Date	Lab		
Illinois		IEPA		100226	NELAP	1/31/2014	Collinsville		
Kansas	3	KDHE		E-10374	NELAP	1/31/2014	Collinsville		
Louisia	ana	LDEQ		166493	NELAP	6/30/2013	Collinsville		
Louisia	ana	LDEQ		166578	NELAP	6/30/2013	Springfield		
Texas		TCEQ		T104704515-12-1	NELAP	7/31/2013	Collinsville		
Arkans	as	ADEQ		88-0966		3/14/2014	Collinsville		
Illinois	i	IDPH		17584		4/30/2013	Collinsville		
Kentuc	ky	UST		0073		4/5/2014	Collinsville		
Missou	ıri	MDNR		00930		4/13/2013	Collinsville		

9978

Laboratory Results

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040248

Client Project: National Tailings Pile - Design and Construction

Report Date: 15-Apr-13

Lab ID: 13040248-001

Client Sample ID: Nat-East

Matrix: SURFACE WATER

Collection Date: 04/03/2013 10:45

Matrix. SUNFACE W	TILIT			Conceilon	Date. 04/	00/2010	10:10	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 375.2 REV 2.0 1993	(TOTAL)							
Sulfate	NELAP	200		348	mg/L	20	04/04/2013 14:42	R175513
STANDARD METHOD 4500-	H B, LABORATORY A	NALYZED						
Lab pH	NELAP	1.00		8.07		1	04/08/2013 17:00	R175654
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		730	mg/L	1	04/05/2013 21:30	R175648
STANDARD METHODS 2540	D							
Total Suspended Solids	NELAP	6		< 6	mg/L	1	04/04/2013 14:06	R175517
STANDARD METHODS 2540) F							
Solids, Settleable	NELAP	0.1		< 0.1	ml/L	1	04/04/2013 11:35	R175507
STANDARD METHODS 5310	C, ORGANIC CARBO	N						
Total Organic Carbon (TOC)	NELAP	1.0		< 1.0	mg/L	1	04/04/2013 17:21	R175536
EPA 600 4.1.1, 200.7R4.4, MI	ETALS BY ICP (DISSO	LVED)						
Cadmium	NELAP	2.00		< 2.00	μg/L	1	04/05/2013 2:07	87063
Zinc	NELAP	10.0		378	µg/L	1	04/05/2013 2:07	87063
EPA 600 4.1.4, 200.7R4.4, MI	ETALS BY ICP (TOTAL	_)						
Cadmium	NELAP	2.00		< 2.00	µg/L	1	04/05/2013 22:01	87055
Zinc	NELAP	10.0		388	μg/L	1	04/05/2013 22:01	87055
MS QC limits for Ca and Mg are r	not applicable due to high s	sample/spike	ratio.					
STANDARD METHODS 303	0 E, 3113 B, METALS I	BY GFAA						
Lead	NELAP	2.00	X	5.70	μg/L	1	04/07/2013 14:40	87056
STANDARD METHODS 2340	B, HARDNESS (TOTA	AL)						
Hardness, as (CaCO3)	NELAP	1.00		563	mg/L	1	04/05/2013 0:00	R175589
STANDARD METHODS 3030	B, 3113 B, METALS E	BY GFAA (D	ISSOLVE	D)				
Lead	NELAP	2.00		4.23	μg/L	1	04/07/2013 11:40	87062

Laboratory Results

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040248

Client Project: National Tailings Pile - Design and Construction

Report Date: 15-Apr-13

Lab ID: 13040248-002

Client Sample ID: Nat-NW

Matrix: SURFACE WATER

Collection Date: 04/03/2013 10:25

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 375.2 REV 2.0 1993	(TOTAL)							
Sulfate	NELAP	50	S	75	mg/L	5	04/05/2013 14:12	R175597
MS and/or MSD did not recover w	ithin control limits due to n	natrix interfer	ence.					
STANDARD METHOD 4500-F	B, LABORATORY A	NALYZED						
Lab pH	NELAP	1.00		8.13		1	04/05/2013 21:27	R175587
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		270	mg/L	1	04/05/2013 21:30	R175648
STANDARD METHODS 2540	D							
Total Suspended Solids	NELAP	6		< 6	mg/L	1	04/04/2013 14:06	R175517
STANDARD METHODS 2540	F							
Solids, Settleable	NELAP	0.1		< 0.1	ml/L	1	04/04/2013 11:35	R175507
STANDARD METHODS 5310	C, ORGANIC CARBO	N						
Total Organic Carbon (TOC)	NELAP	1.0		< 1.0	mg/L	1	04/04/2013 19:54	R175536
EPA 600 4.1.1, 200.7R4.4, ME	TALS BY ICP (DISSO	LVED)						
Cadmium	NELAP	2.00		< 2.00	μg/L	1	04/05/2013 2:25	87063
Zinc	NELAP	10.0		< 10.0	μg/L	1	04/05/2013 2:25	87063
EPA 600 4.1.4, 200.7R4.4, ME	TALS BY ICP (TOTAL	_)						
Cadmium	NELAP	2.00		< 2.00	μg/L	1	04/05/2013 22:12	87055
Zinc	NELAP	10.0		< 10.0	μg/L	1	04/05/2013 22:12	87055
STANDARD METHODS 3030	E, 3113 B, METALS I	BY GFAA						
Lead	NELAP	2.00		< 2.00	μg/L	1	04/07/2013 14:43	87056
STANDARD METHODS 2340	B, HARDNESS (TOTA	(L)						
Hardness, as (CaCO3)	NELAP	1.00	and the second second	216	mg/L	1	04/05/2013 0:00	R175589
STANDARD METHODS 3030	B. 3113 B. METALS E	Y GFAA (D	ISSOLVE	D)				
Lead	NELAP	2.00		< 2.00	μg/L	1	04/07/2013 11:50	87062

Sample Summary

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040248

Client Project: National Tailings Pile - Design and Construction

Lab Sample ID	Client Sample ID	Matrix	Fractions	Collection Date
13040248-001	Nat-East	Surface Water	5	04/03/2013 10:45
13040248-002	Nat-NW	Surface Water	5	04/03/2013 10:25

Dates Report

http://www.teklabinc.com/

Work Order: 13040248

Report Date: 15-Apr-13

Client: Barr Engineering Company

Client Project: National Tailings Pile - Design and Construction

Sample ID	Client Sample ID	Collection Date	Received Date			
	Test Name			Prep Date/Time	Analysis Date/Time	
13040248-001A	Nat-East Nat-East	04/03/2013 10:45	04/04/2013 8:00			
	Standard Methods 2540 F		•		04/04/2013 11:35	
13040248-001B	Nat-East	04/03/2013 10:45	04/04/2013 8:00			
	EPA 600 375.2 Rev 2.0 1993 (Total)				04/04/2013 14:42	
	Standard Method 4500-H B, Laboratory Analyzed				04/08/2013 17:00	
	Standard Methods 2540 C (Total)				04/05/2013 21:30	
	Standard Methods 2540 D				04/04/2013 14:06	
3040248-001C	Nat-East	04/03/2013 10:45	04/04/2013 8:00			
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			04/04/2013 10:34	04/05/2013 22:01	
	Standard Methods 3030 E, 3113 B, Metals by GFAA			04/04/2013 10:39	04/07/2013 14:40	
	Standard Methods 2340 B, Hardness (Total)				04/05/2013 0:00	
13040248-001D	Nat-East	04/03/2013 10:45	04/04/2013 8:00			
	EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved)			04/04/2013 11:18	04/05/2013 2:07	
	Standard Methods 3030 B, 3113 B, Metals by GFAA (Dissolved)		04/04/2013 11:15	04/07/2013 11:40	
13040248-001E	Nat-East	04/03/2013 10:45	04/04/2013 8:00			
	Standard Methods 5310 C, Organic Carbon				04/04/2013 17:21	
13040248-002A	Nat-NW	04/03/2013 10:25	04/04/2013 8:00			
	Standard Methods 2540 F				04/04/2013 11:35	
13040248-002B	Nat-NW	04/03/2013 10:25	04/04/2013 8:00			
	EPA 600 375.2 Rev 2.0 1993 (Total)				04/05/2013 14:12	
	Standard Method 4500-H B, Laboratory Analyzed				04/05/2013 21:27	
	Standard Methods 2540 C (Total)				04/05/2013 21:30	
	Standard Methods 2540 D				04/04/2013 14:06	
3040248-002C	Nat-NW	04/03/2013 10:25	04/04/2013 8:00			
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			04/04/2013 10:34	04/05/2013 22:12	
	Standard Methods 3030 E, 3113 B, Metals by GFAA			04/04/2013 10:39	04/07/2013 14:43	
	Standard Methods 2340 B, Hardness (Total)				04/05/2013 0:00	
13040248-002D	Nat-NW	04/03/2013 10:25	04/04/2013 8:00			
	EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved)			04/04/2013 11:18	04/05/2013 2:25	
	Standard Methods 3030 B, 3113 B, Metals by GFAA (Dissolved)		04/04/2013 11:15	04/07/2013 11:50	
13040248-002E	Nat-NW	04/03/2013 10:25	04/04/2013 8:00			
	Standard Methods 5310 C, Organic Carbon				04/04/2013 19:54	

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040248

Client Project: National Tailings Pile - Design and Construction

Batch R175513	SampType:	MBLK		Units mg/L							
SampID: MBLK											Date
Analyses			RL	Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						04/04/2013
Batch R175513 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		19	20	0	93.2	90	110	04/04/2013
Batch R175597 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						04/05/2013
Batch R175597 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		21	20	0	104.6	90	110	04/05/2013
Batch R175597 SampID: 13040248-	SampType: 002BMS	MS		Units mg/L		į.					Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			50		128	50	75.38	105.9	90	110	04/05/2013
Batch R175597 SampID: 13040248-	SampType: 002BMSD	MSD		Units mg/L					RPD	Limit 10	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Sulfate			50	S	134	50	75.38	117.2	128.4	4.28	04/05/2013
STANDARD METH	OD 4500-H	B, LAB	ORATO	RY ANALYZE)						
Batch R175587 SampID: LCS	SampType:	LCS		Units							Date
Analyses			RL	Qual			SPK Ref Val			High Limit	Analyzed
Lab pH			1.00		6.99	7.00	0	99.9	99.1	100.8	04/05/2013
Batch R175587 SampID: 13040248-	SampType: 002B	DUP		Units					RPD	Limit 10	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Lab pH			1.00		8.16				8.130	0.37	04/05/2013

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040248

Client Project: National Tailings Pile - Design and Construction

Batch R175654	SampType:	LCS		Units							
SampID: LCS											Date Analyzed
Analyses			RL	Qual			SPK Ref Val			High Limit	
Lab pH			1.00		7.01	7.00	0	100.1	99.1	100.8	04/08/2013
Batch R175654	SampType:	DUP		Units					RPD	Limit 10	
SampID: 13040248	8-001B										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Lab pH			1.00		8.09				8.070	0.25	04/08/2013
STANDARD MET	HODS 2540 C	(TOT	AL)								
Batch R175648 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved S	Solids		20		< 20						04/05/2013
Total Dissolved S	Solids		20		< 20						04/05/2013
Batch R175648	SampType:	LCS		Units mg/L							
SampID: LCS							00V D () /	N/DE0	1 12 4	()*-1-11-34	Date Analyzed
Analyses			RL	Qual	Result		SPK Ref Val			High Limit	
Total Dissolved S	Solids		20		1020	1000	0	102.0	90	110	04/05/2013
Batch R175648 SampID: LCSQC	SampType:	LCSQ	С	Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved S	Solids		20		1060	1000	0	106.2	90	110	04/05/2013
Batch R175648	SampType:	DUP		Units mg/L					RPD	Limit 15	
SampID: 1304024	8-001B-DUP										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Va	%REC	RPD Ref	Val %RPD	Analyzed
Total Dissolved S	Solids		20		722				730.0	1.10	04/05/2013
STANDARD MET	'HODS 2540 D)									
Batch R175517 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Va	%REC	Low Limit	High Limit	Analyzed
Total Suspended	Solids		6	-	< 6						04/04/2013
Batch R175517 SampID: LCS	SampType:	LCS		Units mg/L			,				Date
Analyses			RL	Qual	Result	Spike	SPK Ref Va	%REC	Low Limit	High Limit	Analyzed
Total Suspended	Solids		6		93	100	0	93.0	85	115	04/04/2013
Total Suspended			6		94	100	0	94.0	85	115	04/04/2013
Total Suspended	Solids		6		105	100	0	105.0	85	115	04/04/2013
Total Suspended	Solids		6		103	100	0	103.0	85	115	04/04/2013

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040248

Client Project: National Tailings Pile - Design and Construction

STANDARD METHODS 2540 D)									
Batch R175517 SampType: SampID: 13040248-001B-DUP	DUP		Units mg/L					RPD	Limit 15	Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Total Suspended Solids		6		< 6		*************************************		0	0.00	04/04/2013
STANDARD METHODS 5310 C	, ORG	ANIC CA	RBON							
Batch R175536 SampType: SampID: ICB/MBLK	MBLK		Units mg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Organic Carbon (TOC)		1.0		< 1.0						04/04/2013
Batch R175536 SampType: SampID: ICV/LCS	LCS		Units mg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Organic Carbon (TOC)		10.0		64.5	59.7	0	108.0	90	110	04/04/2013
Batch R175536 SampType: SampID: 13040248-001EMS	MS		Units mg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Organic Carbon (TOC)		1.0		5.4	5.0	0.5600	96.0	85	115	04/04/2013
Batch R175536 SampType: SampID: 13040248-001EMSD	MSD		Units mg/L					RPD	Date	
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Total Organic Carbon (TOC)		1.0		5.3	5.0	0.5600	95.2	5.360	0.75	04/04/2013
EPA 600 4.1.1, 200.7R4.4, MET	ALS B	Y ICP (E	DISSOLVED)							
Batch 87063 SampType: SampID: MBLK-87063	MBLK		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium		2.00		< 2.00	2.00	0	0	-100	100	04/04/2013
Zinc		10.0		< 10.0	10.0	0	0	-100	100	04/04/2013
Batch 87063 SampType: SampID: LCS-87063	LCS		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium		2.00		45.9	50.0	0	91.8	85	115	04/04/2013
Zinc		10.0		447	500	0	89.4	85	115	04/04/2013
Batch 87063 SampType: SampID: 13040248-002DMS	MS		Units µg/L							Date
Analyses		RL	Qual		Spike	SPK Ref Val			High Limit	Analyzed
Cadmium		2.00		46.1	50.0	0	92.2	75	125	04/05/2013
Zinc		10.0		455	500	2.7	90.4	75	125	04/05/2013

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040248

Client Project: National Tailings Pile - Design and Construction

Batch 87063	SampType:	MSD	1 1 17	Units µg/L				(-111)	RPD	Limit 20	
SampID: 13040248-	002DMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Cadmium			2.00		45.9	50.0	0	91.8	46.1	0.43	04/05/2013
Zinc			10.0		453	500	2.7	90.1	454.7	0.29	04/05/2013
EPA 600 4.1.4, 200	.7R4.4, MET	ALS B	Y ICP (T	OTAL)							
Batch 87055 SampID: MBLK-870	SampType: 55	MBLK		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium			2.00		< 2.00	2.00	0	0	-100	100	04/05/2013
Calcium			50.0		< 50.0	50.0	0	0	-100	100	04/05/2013
Magnesium			10.0		< 10.0	10.0	0	0	-100	100	04/05/2013
Zinc			10.0		< 10.0	10.0	0	0	-100	100	04/05/2013
Batch 87055 SampID: LCS-8705	SampType:	LCS		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium			2.00		50.9	50.0	0	101.8	85	115	04/05/2013
Calcium			50.0		1340	1200	0	111.6	85	115	04/08/2013
Magnesium			10.0		802	750	0	106.9	85	115	04/05/2013
Zinc			10.0		492	500	0	98.4	85	115	04/05/2013
Batch 87055 SampID: 13040248-	SampType: -001CMS	MS		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium			2.00		50.0	50.0	0	100.0	75	125	04/05/2013
Calcium			50.0		125000	1200	123800	75.0	75	125	04/05/2013
Magnesium			10.0	S	62100	750	61740	48.0	75	125	04/05/2013
Zinc			10.0		870	500	387.7	96.4	75	125	04/05/2013
Batch 87055 SampID: 13040248-	SampType: 001CMSD	MSD		Units µg/L					RPD	Limit 20	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Cadmium			2.00		49.7	50.0	0	99.4	50	0.60	04/05/2013
Calcium			50.0	S	124000	1200	123800	50.0	124700	0.24	04/05/2013
Magnesium			10.0	S	62200	750	61740	65.3	62100	0.21	04/05/2013
Zinc			10.0		864	500	387.7	95.2	869.5	0.66	04/05/2013
STANDARD METH				THE RESIDENCE OF THE PARTY OF T	V						
Batch 87056 SampID: MBLK-870	SampType:	MBLK		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
			HOLEST PROPERTY.			TO SEE STATE OF THE PARTY OF TH					

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040248

Client Project: National Tailings Pile - Design and Construction

STANDARD METHODS 3030 Batch 87056 SampType:		B, MET	Units µg/L	\						
SampID: LCS-87056	200		onno pg/2							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead		2.00		16.6	15.0	0	110.6	85	115	04/07/2013
Batch 87056	MS		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead		2.00	2 2	17.3	15.0	0.9193	109.1	70	130	04/07/2013
Batch 87056 SampType: SampID: 13040248-002CMSD	MSD		Units µg/L		-			RPD	Limit 20	Date
Analyses		RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Lead		2.00		16.4	15.0	0.9193	103.4	17.2869	5.12	04/07/2013
STANDARD METHODS 3030 E	3, 3113	B, META	ALS BY GFAA	(DISSOL	VED)					
Batch 87062 SampType: SampID: MBLK-87062	MBLK		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead		2.00		< 2.00	2.00	0	0	-100	100	04/07/2013
Batch 87062 SampType: SampID: LCS-87062	LCS		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead		2.00		13.9	15.0	0	92.6	85	115	04/07/2013
Batch 87062 SampType: SampID: 13040248-001DMS	MS		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead		2.00		17.3	15.0	4.231	87.5	70	130	04/07/2013
Batch 87062 SampType:	MSD		Units µg/L					RPD	Limit 20	
SampID: 13040248-001DMSD						ODIV D. CIV	0/050	5555	4.1.0/555	Date Analyzed
Analyses		RL	Qual		Spike				Val %RPD	
Lead		2.00		18.5	15.0	4.231	94.9	17.3487	6.23	04/07/2013

Custody seal(s) intact on shipping container/cooler. TWM 4/4/13

Receiving Check List

http://www.teklabinc.com/

Client: Barr Engineering Company Client Project: National Tailings Pile - Design and Cor	nstruction				ler: 13040 ate: 15-Ap		
Carrier: Tim Mathis		ved By: EEP					
Completed by: On: 04-Apr-13 Timothy W. Mathis	Revi O 04-Ap	or-13	MUAL Michael L. Austin				
Pages to follow: Chain of custody 1	Extra pages included	0					
Shipping container/cooler in good condition?	Yes 🗸	No _	Not Present		Temp °C	1.8	
Type of thermal preservation?	None	Ice 🗸	Blue Ice		Dry Ice		
Chain of custody present?	Yes 🗸	No 🗌					
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌					
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌					
Samples in proper container/bottle?	Yes 🗸	No 🗌					
Sample containers intact?	Yes 🗸	No 🗌					
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌					
All samples received within holding time?	Yes 🗸	No 🗌					
Reported field parameters measured:	Field	Lab 🗸	NA				
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌					
When thermal preservation is required, samples are complian 0.1°C - 6.0°C, or when samples are received on ice the same		between					
Water – at least one vial per sample has zero headspace?	Yes	No	No VOA vials	✓			
Water - TOX containers have zero headspace?	Yes	No 🗌	No TOX containers	✓			
Water - pH acceptable upon receipt?	Yes 🗸	No					
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA	✓			
Any No responses r	must be detailed below	v or on the (COC.				

E	BAF	₹R

Chain of Custody

1001 Diamond Ridge, Suite 1100 Jefferson City, MO 65109 (573) 638-5000

Teklal	0,	Inc	C.
Courier	P	ick	Up

1 of 1
•

Soil

Air Bill Number:

CUSTEDY SEAL OWNED my 4.4.13

BARR (573) 6	38-5000				Cour	ıer	110	CH.	O P			T																Project Manager:	Ту Л	⁄lorris		
Project Number: 25860003.06 TLM2 030																									rs							
Project Name: National Tailings Pile - Design and Construction																									Number of Containers	Project QC Contact	: <u>A</u>	ndrea No	ord	_		
Sample Origination State: MO (use two letter postal state abbreviation)										olids		Carbon			Solide	child								f Cor								
COC Number: NAT 040313											ded	Solide	ic Car		Metals			П							ber o	Sampled By:	S	tephen M	oilanen	_		
	·					N	Matrix		Туре				nsber	hle S.)rgan	etals	ed Me	SS	1930						Num	Laboratory: _Tek	eklab	klab				
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Water	Soil		Grab	Сошр	oc oc	Hd	Total Suspended Solids	Settleshle	Total Organic	Total Metals	Dissolved 1	Hardness Total Discolved	Total								Total					
		0248		04/03/13	10:45	х		٦	x			x	x	x :	x x	x	x	x	x								5	Preservativ Unpreserve		INO3, 1	H2SO4	2
1. Nat-East 2. Nat - NW	1304	DEFB		4/03/13		X			X						X												5	*			. (
3						-																									_	-
<u>, </u>																																
5.				-																												
	1																															
6.																																
1.																			T													
8. Comments: Invoice to M at Doe Run. Matrix is surface water. Metals include Cadmium.			Run. Resu	lts to be sent to	Allison Olds	s (aol	ds@ba	arr.co	om) a	t Bar	r Eng	gine	ering	, An	drea	No	rd (a	nord	@b:	arr.co	om)	at B	arr)	Eng	ginee	ring,	and	Mark Nations	(mnat	ions@do	erun.co	n)
Common Parameter/Con	ntainer – P	reservati	on Key	Relinquished		Ni	Ih		2	n Ice	? N	Da	-3- ite:	13	Т) b	OC		Rec	eived	d-by		1	6	1		Marie a	Date:	13	Time:	30	
#1 - Volatile Organics = BTEX, GRO, TPH, 8260 Full List #2 - Semivolatile Organics = PAHs, PCP, Dioxins, 8270					By: On I						? N	Da	Daty 4.13			3 TOSOU			Received by:				S.		W	^	Date:4/4	/13	Time:			

Water

Distribution: White - Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink - Lab Coordinator

Samples Shipped VIA: Air Freight Affected Express Sampler Mother:

#3 - General = pH, Chloride, Fluoride, Alkalinity, TSS,

#4 - Nutrients = COD, TOC, Phenols, Ammonia Nitrogen,

Full List, Herbicide/Pesticide, PCBs

TDS, TS, Sulfate

TKN